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ABSTRACT 

Factor analysis is a statistical tool that is utilized to summarize the relationships among variables in a concise manner to help in 

conceptualization. It is regarded as one of the most powerful methods for reducing variable complexity to greater simplicity. This 

research report aims at explaining the meaning and usage of three useful factor analytic statistics: factor scores, structure coefficient, 

and communality coefficient in a simplistic way to enable researchers to correctly identify and interpret these concepts. A better 

understanding of these concepts will help researchers make sense of factor analytic results. 
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INTRODUCTION 

 Factor Analysis 

Exploratory factor analysis (EFA) has been used as an analytical tool in educational research for a variety of purposes like the 

reduction of large number of items from a questionnaire or survey instrument to a smaller number of components (Distefano, Zhu 

&Mindrila,2009). This method helps in uncovering latent dimensions underlying a data set, or examining which items have the 

strongest association with a given factor. After identifying the number of factors using EFA, applied researcher use the information 

for ensuing analyses (Gorsuch, 1983).In other to use EFA information in any follow-up studies, applied researchers must create 

scores to represent each individual’s placement on the factor(s) identified from the EFA. These factor scores may then be used to 

investigate the research questions of interest.  

The purpose of this paper is to facilitate an understanding of the relationships between these 3 factor analytic statistics: Factor scores, 

structure coefficient, and communality coefficient. This paper will utilize a heuristic data set from Holzinger and Swineford (1993) 

to demonstrate these relationships. The paper will further illustrate the logic behind the computation and interpretation of these 

factor analytic statistics in a factor analysis interpretation by describing ways in which a researcher may create factor scores 

following an EFA, and how to also compute structure coefficient, and communality coefficients. Finally, this paper will discuss the 

advantages and disadvantages among the methods of computing factor scores. Factor analysis has been touted as one of the most 

effective methods for reducing variable complexity to greater simplicity. It has also been regarded as the furthest logical 

development and “reigning queen” of the correlational methods (Thompson, 2004). 

Factor Analysis and Other Parametric Analysis 

Factor analysis is part of the classical parametric analysis which implies that it is correlational and applies weight to observed 

variables to create synthetic variables that becomes the focus of all analysis. Factor analysis, like all parametric analysis yield 

variance-accounted for effect sizes that are analogous to r2 (Thompson, 1991). However, in spite of the usefulness of factor analysis 

in applied research, not all commentaries on factor analysis have been welcoming in the field of research. Notable among these is 

the misuse of factor analysis and the confusing language associated with the entire method. The confusing language associated with 

factor analysis stems from the fact that it belongs to the parametric analytic family and shares the same characteristic with them: all 

correlational in nature, apply weights to observed variables to create synthetic variables and that these synthetic variables becomes 

the focus of all analyses and finally, it yields a variance accounted for effect sizes that are analogous to r2 in multiple regression 

(Sherry & Henson, 2005).  

The implication for this is that, factor analysis call the same system of weights equations in regression, factors in factor analysis, 

functions or rules in discriminant analysis and canonical correlational analysis. In addition, the weights are utilized in factor analysis. 
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These weights are termed beta weights in regression, pattern coefficient in factor analysis, and standardized function coefficient in 

discriminant analysis or canonical correlational analysis. Factor analysis also yield’s synthetic scores that are analogous to yhat in 

regression, discriminant scores in discriminant analysis, and canonical function score in canonical correlational analysis. These 

scores are what we call factor scores and that is what is going to be one of the major focus of discussion in this paper.  

The goal of this paper is to demonstrate that statistical methodologies used in factor analysis is not that different from the other 

parametric methods mentioned above. Thompson (2004), commenting of these, mentioned that the different names in different 

analysis are just to confuse graduate students. This paper will try to clarify this confusion by explaining the meaning and use of 

these three important factor analytic statistics: factor scores, factor structure coefficients, and communality coefficient. An 

understanding of these terms will help educational researchers to make sense of factor analytic results. As already stated, part of a 

data set from Holzinger and Swineford (1939) will be used to demonstrate the computation and interpretation of these statistics. 

Factor Scores 

The initial step in factor analysis is the creation of a matrix of association coefficient from a raw data matrix. There are a variety of 

matrix of association that could be utilized to compute this matrix of association of the observed variables. Some of the most popular 

matrix of associations are Pearson correlation, variance –covariance matrix, and a spearman rho matrix. 

As already indicated, exploratory factor analysis allows researchers to compute scores for the individuals in the analysis on the 

extracted factors. These scores (factor scores) can therefore be used  in a wide variety of subsequent statistical analysis. Factor 

scores can simply be defined as numerical values that indicates an individual’s relative standing on a latent factor. In other words, 

factor score estimates are not perfectly correlated with the factors themselves, and depending on the nature of a particular data set 

these estimates may in fact only be moderately correlated with the factors.  

These individual scores extracted from EFA, according to Grice (2001) can be correlated with measures of different constructs to 

help clarify the nature of the factors or they can be entered as predictor variables in multiple regression analyses or as dependent 

variable in analysis of variance. It should be noted that factor scores computed as simple sum scores in scale development process 

are often referred to as composite or total scores. The choice made regarding how factor scores are computed can significantly affect 

the quality of the factor scores (Grice, 2001). When computing factor scores, factor pattern matrix, also called weight matrix is 

applied to the observed or measured variables. This process is analogous to yhat scores in multiple regression. The factor pattern 

coefficients are also analogous to the regression weights called beta weights. One important thing however with factor analysis is 

that, if the pattern and structure coefficients are not identical, the factor pattern coefficients must be utilized to compute factor scores 

(Distefano, Zhu, & Mindrila, 2009).  

Gorsuch (1983) outlined four systematic procedures needed in computing factor scores. To begin with, Gorsuch (1983), posited that 

there should be a high correlation between the common factor scores and the factors that you are attempting to measure. Secondly, 

the common factor scores should be unbiased estimates of the true factor scores. In addition, when factors are orthogonal, the factor 

score estimates from one factor should have zero correlations with all the other factors. Finally, if the factors are orthogonal, the 

common factor scores should correlate with each other. The strategies for calculating factor scores that will be discussed in this 

paper includes the regression method, the Bartlett method, the Anderson-Rubin method, and finally, the Thompson method. 

Regression Method 

Regression factor scores predict the location of each individual on the factor or component. As the name implies, independent 

variables in the regression equation are the standardized observed values of the items in the estimated factors or components. The 

matrix formula for calculating factor scores using the regression method is given as follows: 

ZN* V WV*F = FN*F 

Where ZN* V is the Z-score matrix of N people on the V variables, WV*F is the weight matrix applied to the V variables to obtain the 

F factor scores for each of the items of measure. FN*F is the factor score matrix of N individuals on the F factors. The weight matrix 

WV*F is itself a product of the RV*V
-1, the inverse of the V variable by V variable correlation matrix, and PV*F, which is the factor 

pattern coefficient matrix. Therefore the matrix formula for factor scores for the regression method can be rewritten as: ZN* V RV*V
- 

PV*F, = FN*F. 

The regression method remains a popular choice for calculating factor scores because of researchers’ widespread familiarity with 

multiple regression techniques. Regression factor scores can readily be computed as an option within SPSS using the FACTOR 

subcommand: SAVE=REG (ALLFSCORE). The factor score weight matrix labeled by SPSS the Factor Score Coefficient Matrix, 

can be requested as an optional out. Table 1 presents this matrix from the data utilized for this paper. Lastly, each person’s Zscore 



 International Journal of Research Methodology (IJRM) 

 Volume 02, Issue 10, October 2024  ijrm.humanjournals.com ISSN: 2584-1793  

 

Page | 3  
 

on the six measured variables are multiplied by the weight matrix values for both factors, and these products are then summed, thus 

yielding two factor scores for each person. For factor 1, per the table, the compute statement that accomplishes this would be: 

COMPUTE FSHARD1= (.39949*ZT10) + (.45189*ZT12) + (.38404*ZT13) + (.-10139*ZT14) + (-.10055*ZT15) + 

(.11149*ZT17). 

So for person number from the data set of 301 people, this person’s synthetic variable score on factor 1 would be computed as  

= (.39949*-.72930) + (.45189*.22015) + (.38404*.97804) + (.-10139*-.44778) + (-.10055*-.51880) + (.11149*-.45415). 

= .-29135+.09948+.37561+.04540+.05217+-.05063= .230674 

For Factor II, the COMPUTE statement would be: = (-.01362*ZT10) + (-.10183*ZT12) + (-.04562*ZT13) + (.50114*ZT14) + 

(.48359*ZT15) + (.35269*ZT17). 

The Bartlett’s Method 

Another way of computing factor scores is the use of the Bartlett method. In contrast to the regression method, only the shared (i.e., 

common) factors have an impact on factor scores. The sum of squared components for the “error” factors (i.e., unique factors) across 

the set of variables is minimized. Therefore the resulting factor scores are highly correlated with their corresponding factor and not 

with other factors. However, the estimated factor scores between different factors may still correlate. Bartlett factor scores are 

computed by finding the product of the row vector of observed variables and the inverse of the diagonal matrix of variances of the 

unique factor scores and the factor pattern matrix of loadings. Resulting values are then multiplied by the inverse of the matrix 

product of the matrices of factor loadings and the inverse of the diagonal matrix of variances of the unique factor scores (DiStefano, 

Zhu, & Mindrila, 2009). One advantage of Bartlett factor scores is that it produces unbiased estimates of the true factor scores 

(Distefano, Zhu, &Mindrila, 2009). This is because Bartlett scores are produced by using maximum likelihood estimates – a 

statistical procedure which produces estimates that are the most likely to represent the true factor scores. 

The Anderson-Rubin method 

This method was proposed by Anderson and Rubin (1956). It has a lot of similarity with the Bartlett method except that Anderson 

and Rubin added a requirement for the factor scores to be uncorrelated. That is, the least squares formula is adjusted to produce 

factor scores that are uncorrelated with other factors and also with each other. The Anderson-Rubin equation is more complex than 

Bartlett’s. However, the factor estimates generated by this method has correlations that form an identity matrix. The Anderson-

Rubin estimates, like the other two already discussed can be automatically generated in SPSS by selecting the Anderson and Rubin 

option in the Factor Analysis: Factor Scores window.  

Thompson Method 

Thompson (1993) came up with another method for computing factor scores which is very different from the methods discussed so 

far. One general similarity with the methods already discussed is that, the generated factor scores are in Zscore format. Implying 

that each set of factor score for any given factor will have a mean of zero and a standard deviation of one. Wells (1999) posited that 

when factor scores are in Zscore forms, it does not allow the researcher to compare the mean factor score on any given factor with 

the factor score means on other factors for the same data set. That explains one advantage that the Thompson method has over the 

other methods. It yields a standardized, noncentered factor score that permits the comparison of factor score means across factors. 

Therefore this method yield factor scores with a standard deviation of one, but a non-zero mean. 

The calculation of factor scores utilizing the Thompson method is given as follows: To begin with, the variables are converted to 

Zscore form using the SAVE option in DESCRIPTIVES procedure within SPSS. In the second step of this method, the original 

variable means are added back onto the Z-scores using COMPUTE statements. For example, the measured variable, T10, would be 

re expressed as 

COMPUTE TT10=ZT10 + 96.28 

The variable TT10 would have its original mean, but the standard deviation of 1. In the third step of this method, factor scores are 

obtained by multiplying these standardize but non-centered scores by the values in the factor score matrix, WV*F , as previously 

illustrated. These steps are performed separately for each factor score composite. The Thompson factor score for factor1 would be 

calculated as: 
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COMPUTE FSBT1 (.39949*TT10) + (.45189*TT12) + (.38404*TT13) + (.-10139*TT14) + (-.10055*TT15) + (.11149*TT17) 

Table 1. Varimax-rotated Pattern/Structure Coefficients 

                                             Factor 

Variable I II h 2 

T10 .13724 .76679 .60680 

T12 .00910 .83268 .69344 

T13 .07693 .72407 .53020 

T14 .80670 .00505 .65079 

T15 .77737 -.00036 .60430 

T17 .64109 .35701 .53845 

The communality coefficient, h 2 can be computed by squaring the pattern/structure coefficients, and adding all these squared values 

for a given measured variable (e.g., T10, .766792 + .137242 = 58.797% + 1.883%= 60.680%. 

Relationships among Factor Scores 

It can be seen from the table 2 that if and only if factor extraction is by principal components methods, all factor scores obtained by 

the various methods will be identical, except for the factor scores generated via Thompson methods. It is important to understand 

that although the means of the factor scores generated by the four methods are not equal, when the correlations among the factor 

scores are examined, all the factor scores correlate perfectly with all the other factor scores on the same factor. This occurs only if 

the principal components is the factor extraction method. 

Structure and Communality Coefficient 

In parametric analysis, structure coefficient are called such because of how they inform researchers about the structure or makeup 

of the effect represented by the synthetic variable yhat. It is a simple bivariate correlation between an observed variable and a 

synthetic variable. It should be noted that, because they are bivariate correlations, they are not affected by collinearity between the 

predictors. They simply throw an important light on the importance of predictors. In factor analysis, when the factors are not 

perfectly uncorrelated, as typical in an oblique rotation, the factor pattern matrix and factor structure matrix will not be identical, 

therefore both must be interpreted. This is analogous to the multiple regression analysis in the sense that, sometimes the beta weights 

and the structure coefficients are equal but usually both must be interpreted. Elements within the factor structure matrix, SF*F are 

called structure coefficient. 

Communality coefficient on the other hand is explained as the proportion of variance in the observed variable that is reproduced in 

the extracted factors. The communality coefficient for a given observed variable is generated by the sum of the squared structure 

coefficient across each row of the factor structure matrix, as noted previously. Communality coefficient is denoted by the symbol 

h2 .Because h2 a squared metric statistic, it can be operationalized as the R2 between a given measured variable and the two factor 

scores. 

Table 2 

   Factor Score Computation Method   

Person Regressiona Bartlett Anderson-Rubin Regressionb Thompson 

1 .23066 .23066 .23066 .23 137.04 

2 1.21497 1.21497 1.21497 1.22 138.02 

3 -1.48309 -1.48309 -1.48309 -1.48 135.32 

4 -.72601 -.72601 -.72601 -.72 136.08 

5 .30378 .30378 .30378 .30  

a These regression factor scores were computed using the SPSS “save” command. 

Conclusion and Implication for Applied Researchers 

In conclusion, the purpose of this paper was to simplify and explain factor score, structure coefficient, and communality coefficient 

in a way that upcoming researchers can understand and also to overcome the confusion that underlies these important concepts in 

factor analysis. It is often time difficult for readers to understand these concepts because of the confusing practice of using different 

terminologies in different analyses to name the same concept. Factor analysis is an important statistical tool that, when properly 
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utilized can help researchers explore complex network of interrelationships among variables. This paper helped to reiterate the fact 

that factor scores are simply latent variables, or weighted combinations of observed scores. That is, this paper has established the 

fact that factor analysis helps in uncovering latent dimensions underlying a data set, or examining which items have the strongest 

association with a given factor. Applied researchers can use this invaluable information for future research analysis utilizing this 

statistical technique.  

Using factor analysis can help to explore a complex network of relationship among variables. Factor scores in EFA analysis allows 

the researcher to compute scores for the individuals in the analysis on the extracted factors. These scores (factor scores) are 

subsequently used in in a wide variety of statistical analysis. The relationships among the various methods for computing factor 

score goes to buttress the fact that all parametric analysis are similar as could be seen in the demonstrations above. Furthermore 

emphasizing the importance of interpreting structure coefficients and beta weight when the two are not equal  

Appendix: Syntax for Analysis 

SUBTITLE '1. show what structure coefficients are $$$$'. 

CORRELATIONS VARIABLES T10 T12 T13 T14 T15 T17 WITH FSCORES1 FSCORES2. 

subtitle '2a. show what communality coefficients are##'. 

regression 

variables=T10 T12 T13 T14 T15 T17 FSCORE1 FSCORE2/DEPENDENT= T10/enter fscore1 fscore2 . 

subtitle '2b. show what communality coefficients are##' . 

regression 

variables= T10 T12 T13 T14 T15 T17 FSCORE1 FSCORE2/ dependent= T12/enter fscore1 fscore2 . 

subtitle '2c . show what communality coefficients are##' . 

regression 

variables=T10 T12 T13 T14 T15 T17 FSCORE1 FSCORE2/dependent=T13/enter fscore1 fscore2 . 

subtitle '2d. show what communality coefficients are##' . 

regression 

variables=T10 T12 T13 T14 T15 T17 FSCORE1 FSCORE2/dependent=T14/enter fscore1 fscore2 . 

subtitle '2e. show what communality coefficients are##' . 

regression 

variables=T10 T12 T13 T14 T15 T17 FSCORE1 FSCORE2/dependent=T15/enter fscore1 fscore2 . 

subtitle '2f. show what communality coefficients are##' . 

regression 

variables=T10 T12 T13 T14 T15 T17 FSCORE1 FSCORE2/dependent=T17/enter fscore1 fscore2 . 

SUBTITLE '3a. Factor scores BARTLETT method ###'. 

FACTOR VARIABLES=T10 T12 T13 T14 T15 T17/CRITERIA=FACTORS (2)  

/EXTRACTION=PC/ROTATION=VARIMAX/SAVE=BART (ALL FSCOR). 
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VARIABLE LABELS FSCOR1 'SPEED bart' 

FSCOR2 'MEMORY bart'. 

SUBTITLE '3b. Factor scores ANDERSON-RUBIN ####'. 

FACTOR VARIABLES=T10 T12 T13 T14 T15 T17/CRITERIA=FACTORS (2)  

/EXTRACTION=PC/ROTATION=VARIMAX/SAVE=AR (ALL FSCR). 

VARIABLE LABELS FSCR1 'SPEED ar' 

FSCR2  'MEMORY ar' . 

SUBTITLE '4a. compute z-score ****' . 

DESCRIPTIVES VARIABLES= T10 TO T17/save. 

print formats zt10 to zt17 (F8.5) . 

list variables=zt10 to zt17/cases=25 . 

SUBTITLE '4b. Prove z-scores are z-scores ****'. 

DESCRIPTIVES VARIABLES=ZT10 TO ZT17. 

SUBTITLE '4c. compute regression factor scores hard way ****' . 

COMPUTE FSHARD1= (.39949*ZT10)+(.45189*ZT12)+(.38404*ZT13)+(-.10139*ZT14)+(-.10055*)+(.11149*ZT17). 

COMPUTE FSHARD2=(-.01362*ZT10)+(-.10183*ZT12)+(-.04562*ZT13)+(.50114*ZT14)+(.48359*ZT15)+(.35269*ZT17). 

VARIABLE LABELS FSHARD1 'SPEED hard' 

FSHARD2 'MEMORY hard'. 

SUBTITLE '5a. compute Thompson factor scores @@@@' . 

COMPUTE TT10=ZT10+96.28. 

COMPUTE TT12=ZT12+110.54. 

COMPUTE TT13=ZT13+193.47. 

COMPUTE TT14=ZT14+175.15. 

COMPUTE TT15=ZT15+90.01. 

COMPUTE TT17=ZT17+8.23. 

COMPUTE FSBT1=(.39949*ZT10)+(.45189*ZT12)+(.38404*ZT13)+(-.10139*ZT14)+(-.10055*ZT15)+(.11149*ZT17). 

COMPUTE FSBT2=(-.01362*ZT10)+(-.10183*ZT12)+(-.04562*ZT13)+(.50114*ZT14)+(.48359*ZT15)+(.35269*ZT17). 

VARIABLE LABELS FSBT1 'SPEED thompson' 

FSBT2 'MEMORY thompson'. 

SUBTITLE '6. Show factor score relationships &&&&'. 
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LIST VARIABLES=FSCORE1 FSCR1 FSHARD1 FSBT1/CASES=25. 

DESCRIPTIVES VARIABLES=FSCORE1 TO FSCR2 FSHARD1 TO FSHARD2 FSBT1 TO FSBT2. 

CORRELATIONS VARIABLES= FSCORE1 TO FSCR2 FSHARD1 TO FSHARD2 FSBT1 TO FSBT2. 
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